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Gauss-Kronrod Integration Rules 
for Cauchy Principal Value Integrals 

By Philip Rabinowitz 

Abstract. Kronrod extensions to two classes of Gauss and Lobatto integration rules for the 
evaluation of Cauchy principal value integrals are derived. Since in one frequently occurring 
case, the Kronrod extension involves evaluating the derivative of the integrand, a new 
extension is introduced using ni + 2 points which requires only values of the integrand. 
However, this new rule does not exist for all ni. and when it does, several significant figures are 
lost in its use. 

1. Introduction. In this paper we shall consider Kronrod extensions (KE) to 
integration rules based on Gauss and Lobatto points for the evaluation of Cauchy 
principal value (CPV) integrals of the form 

(1) I(f;)XY=f'w(x) f(x) dx) I <A< 1. 
x dx -1X1 

Since the existence theory of KE's for regular integrals insures such extensions for 
only certain classes of weight functions, w(x), we shall restrict our attention here to 
the most important class, namely w(x) = (1 - X2)y-1/2, where 0 < y < 2 in the 
Gauss case and - ' <I ?< 1 in the Lobatto case [9]. (The only other relevant weight 
functions are the Jacobi weight functions w(x) = (1 - x)a(1 + x):l with a 
- I < ,l3 < 39 or Y = 9, - a <? 2 and w(x) -Ix2 /(1 - rx2), -oo < r < 1 
[5].) For our case, w(x) = (1 - x2)-1/2, the corresponding orthogonal polynomials 
are the Gegenbauer polynomials CnJ,(x) (usually written C,[(x)) which have the 
following normalization [1 1, p. 174] 

(2) 
f'w(x)CnJ,(x)Cmh(x) 

dx = nmhny, 

where 

(3) h = 7 I(n + 21)F(i + j)/(n + p)n!F(1i)F(2p), 

which implies that Cnt, = k n xn + * where 

(4) k - 2N'(n + jL)/n!F(/). 

C,liJ(x) is even (odd) if n is even (odd). Special cases of Cnt,(x), perhaps with a 
different normalization, are Tn(x), the Chebyshev polynomials of the first kind 

Received October 6, 1981. 
1980 Mathematics Subject Classification. Primary 65D30. 
Keq words and phrases. Cauchy principal value integral, Kronrod rule, Gauss integration rule, Lobatto 

integration rule, Gegenbauer polynomials, Szego polynomials. 

(D1983 American Mathematical Society 

0025-5718/82/0000-1 242/$04.75 

63 



64 PHILIP RABINOWITZ 

( 0= O), Px(X), the Legendre polynomials (= 2), and Uj(x), the Chebyshev 
polynomials of the second kind (i = 1). 

The CQ,j(x) satisfy the following differential equation 

(5) (1 - X2)C,,(X) - (2,(1 + l)xCn,(x) + n(n + 2fi)Cn,(x) = 0, 

and the recurrence relation 

(6) (n + 1)C- l)c;?(x) = 2-(n + t)xCn,,(x) - (n + 2u -I)C,1_I (x), 

n = 0, I,.. 

with Co,(x) _ 1, C 1 (x)- 0. 
We shall now consider integration rules approximating I(f; N) as well as rules 

approximating If- f'jw(x)f(x) dx, since the latter are intimately connected with 
the former as we shall see. We shall say that an integration rule is of exact precision 
N (EP - N) if it is exact for all polynomials of degree ? N and if there exists a 

polynomial of degree N + 1 for which the integration rule is not exact. While in 
many cases, more exact information about the integration error exists, the value of 
the EP is sufficient for our purpose. 

The n-point Gauss-Gegenbauer integration rule (GGIR) approximating If is given 
by 

(7) GGnf= - :w,f(x,), EP = 2n- 1, 
*=1 

where we have omitted the dependence of w, and x, on j and n. The abscissas x, are 

the zeros of Cf,L(x), and the weights w, as well as the weights in the next three 
integration rules, are interpolatory weights to be discussed below. The Lobatto- 
Gegenbauer integration rule (LGIR) with EP -2n - 1 has n + 1 points and is 

given by 
n+ 1 

(8) LGn If 
- 

E f(5,1 

where the x-, are the zeros of Cn+ t+ (1-x2)Cn_1 +1. The KEGGIR is given 
by 

n n+I 
(9) KGGntf E uif(x1) + EVAY), 

with 

{3n +l, n even, , 1 
_ 3n+2, nodd, 
EP 4n -1 =u ,0 

14n + 1, t =1. 

The y, are the zeros of the Szego polynomial E, 1j(x), which we shall treat in 
Section 2. For the moment we state a result of Szego [10] that, for 0 < <, 2, they1 
are real, lie in [-1, 1], and are separated by the x,. (For y # 0, the y1 lie in (-1, 1).) 
The corresponding KELGIR is given by 

n?1 n 
(10) KLGn+lf= 

- 
ijf(5I) + F i3f(ji), 

i1= i=l 
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where the y, are the zeros of F,, ,+ 1(x), and 

[3n, n odd, 
<_, 0 

EP= 3n+ 1, neven, 
04n -1, ft = O. 

As mentioned above, the weights in rules (7)-(10) are interpolatory weights 
defined as follows: Consider the not necessarily monic polynomial 

.N 

( 1 1 ) ~~~~PN (X) YN rJ(X - X-, ) 

where the z, are the integration points of a particular rule and YN is the leading 
coefficient of PN(X). The weight a, corresponding to the point z, is given by 

(12) a fl(W(X)JNjX) dx. 

This can also be written as a, QN(Z,)/Pl(Z,), where the 'function of the second 
kind' QN(t) is defined by 

(13) QN (t) I(PN; t) -f W(X)PN(X) dx. 

The error ENJ in the interpolatory integration rule may be written as 

N 

(14) ENf If Ea,f(z,) YNf W(X)PN(X)f [ZIl ZN X] dx 

where f[z1,... ZN, x] is the Nth divided difference of f(x) based on the points 
. ZN and x. The EP of such a rule depends on the nature of PN(X). However, if 

I(PN) 0, we have that EP = N - 1. 
If we wish to compute the CPV integral (1), we can follow an interpolatory path 

and get immediately 
N I ()NXfIZ,. ZIX 

(15) I(f; A) = Eb,f(z,) + YNIf \IN\ il' ,-ZN, ] dx 
-N x- X 

= RN(f; A) + EN(f; A), 
where 

(16) b, f(X ,(XIjj>(Z) dx, i =,..N 

If A z Z,, we can write 

(17) b - 
a, 1 I w(x)P(x) _ QN(z) 

- 
QN(M) 

'Z -A (Z,-A)Pk(Z,) J1 X-A d_ (Z,-A)Pj(z,) 

while for A = z, we have by limiting process that 

(18) b, = QN(z,)/PN(z,) =Q(A)/PN(A) 
As above, EP N - 1 unless QN(A) - 0 which will occur only for a finite number 
of values of A. Thus, in this approach there is no advantage to Gauss points over any 
other set of integration points for arbitrary A since, for any set of N distinct points, 
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EP = N - 1. However, for those X such that QN(X) 0 O, Gauss rules will be 
superior as we shall see. 

To improve on this situation, we define a second class of interpolatory rules for 
CPV integrals, where we interpolate at the point x = X in addition to the points 

Zl . *ZN. If we define PN+ I(x) = (x - X)PN(x) and zo = X assumed distinct from 

ZI . ZN, we have 

N 

(19) (fX)~ = d,f(z,) + ~'1()Nxfz~. Nx] dx ( ) ( ; ) Ed, f(,) + N |W(X)PN(X)f [ZO- .. IZN X d 

= RN+ (f; A) + EN+I(f; A), 

where 

(20) d 
il(- ( AP 

- i -- 0, . .,N. 
I 

lw(x z)fziN?(x) dx(Z 

For i 1, . . ., N, this reduces to 

(21) d, QN(z) - A' 
(Z,-A)Pk (z,) z ,A' 

while for i - 0 

(22) do QN(I\)/PN(X). 

By comparing EN+I(f; A) with ENf in (14), we conclude that the EP of (19) is 

1 +EPof (14). 
If X = zJ, for some j, we can again apply a limiting process to get the following 

rule, which turns out to have a different structure from (19) in that it involves a 

derivative. Thus, writing 
N 

(23) RN?(;) = dof(A) + E d,f(zl) + df(z1) 

and letting X - zJ, we have 

N 

(24) N?N+(f; X) - E d,f(z,) + lim [dof(A) + d1f(z1)] 

ioJ 

The term in brackets can be written as 

(25) QN (Z i) - QN(A) f(A)] 
- 

Pk [P(z1) f(z - lli;#j(X - Z,) ] 

- A~, - [ ( f(z ) -( A)) -( N (N ) _ (z) ) 1(A)]. 
11 

N 
- Z,) 

Hence, 

(26) lim [dof(X) + djf(zj)] = af'(zj) + a"f(z) 
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where 

_ QN(I)PJ~z1) Q(z1) -a1P"(z,1)2 - Q' (z1) (27) ^ ~QN ( Z, )P ( ZJ) QN ( J) a N (Z)/-QN (Z 

2[Pk(zJ )]2 PN (zJ) Pk (zJ) 

so that in this case 

(28) RN+'(f; Z= a, -(' + af(z.) + a1f'(z1). 

The formulas for RN(f; X) and RN+ ?(f; X) derived above are not new. See, for 
example, Section 3.2 in the survey paper by Gautschi [3] and the references cited 
therein. (Note that Gautschi's formulas refer to f(f(x)/(X - x)) dx = -I(f; X).) 

In Section 3, we shall recover the known Gauss and Lobatto type rules for CPV 
integrals by specializing PN(x) to the appropriate set of points. In addition we shall 
derive KE's of these rules. Now, in contrast to the application of KE's to usual 
GGIR's and LGIR's, it may turn out that in the CPV case the rule RN+I(f; X) 
based on Gauss or Lobatto points does not involve a derivative, whereas the 
corresponding KE does, so that the KE has a different structure. This is not a rare 
situation! In fact, it will invariably occur when we approximate I(f; 0) by a Gauss or 
Lobatto rule using an even number of points, which implies that the rule is of the 
form (19), whereas the KE which has x = 0 as one of the integration points will be 
of the form (28). Furthermore, for w(x) 1, the most important case, any CPV 
integral I(f; X) can be reduced to the sum of a regular integral and I( g; 0) for some 
g closely related to f. Since it is not always convenient to evaluate derivatives, we 
investigate in Section 4 another possibility for extending 2m-point Gauss and 
Lobatto rules by adding 2m + 2 points rather than 2m + 1 points as in the Kronrod 
case, thus avoiding the point x - 0. We shall define a polynomial E2m?+2,(z) closely 
related to the Szego polynomial E2m+ 1 (z), whose zeros are the required integration 
points. However, it turns out that E2m+2,,,(x) does not always have 2m + 2 real 
zeros, and when it does, the ensuing integration rule loses a few significant figures, 
the number increasing with n. As a byproduct of our investigation we get a partial 
answer to the question of the existence of KE's for Gauss rules with respect to the 
Jacobi weight functions w(x) (1 - x)a(l + x): with a - i, - l < 3 ? 2, / # 
and#/ - ~ <a , a #a~ and: =-2,- 2a ,a 2- 

While this paper is mostly of a theoretical nature, we believe that the results 
presented have practical implications for the computation of CPV integrals. The use 
of Gauss-Kronrod pairs in numerical integration is well established by now [3, Sec- 
tion 2.1.2],[5], so that the extension to CPV integrals is only natural. There is a 
considerable literature on numerical evaluation of CPV integrals; see, for example, 
the survey [8]. Automatic programs have been published by Piessens et al. [7] and in 
QUADPACK [6], the latter program also appearing in the NAG library. However, 
these programs are for a single CPV integral. The Gauss-Kronrod approach is much 
more efficient when we wish to evaluate I(f; X) for a series of values of X in (-1, 1). 
Then, provided we choose a Gauss-Kronrod pair with abscissas not too close to the 
X of interest, we have a useful tool for computing CPV integrals together with error 
estimates. 
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If X is close to one of the integration points, the formulas for RN( f; X) and 

RN+ 1(f; X) are numerically unstable. For a stable way to evaluate RN(f; X) in the 
Gauss case, see [3, Section 3.2.3]. Unfortunately, this process does not carry over to 
the Kronrod extension, so that to preserve accuracy in this case, one must use higher 
precision arithmetic. For RN+ l( f; X), Elliott and Paget [2] give an algorithm similar 

to that for RN( f; X) for use in the Gauss case. A close inspection of this algorithm 
reveals that it requires the computation of (f(z,) - f(X))/(z, - X) for all abscissas 
z,. If this term can be computed accurately for all zl, then the rule RN+ i( f; X) can 
be rewritten in such a way as to require computation of a similar term so that the 
Kronrod extension is no more unstable than the Gauss rule. Thus, if X is close to Z. 
for somej, then, referring to (23)-(25), we have that 

N 1 Q[Q(z) QN___ 
_ _ 

RAN?(f; X) = d,lf(z) + f _ X (zi) QN(X ) ( 
1+1~~~~~~~~~~~~~1 zi [ PN(zJ) ' IIAJX- Zj) 

The computation of the last term requires the same care as that of 

((x) -f(AX))/ (X - X). 

2. The Szego Polynomials En ? . In this section, we recall from [9] the properties 
of the polynomials En+ which we shall need to give explicit expressions for the 
weights of the KE's of the Gauss and Lobatto based integration rules for CPV 
integrals. We shall also need some of these properties to study the related poly- 
nomial F2,+2 , which we shall introduce in Section 4. 

We have the following representations: 

(29) En+ 1,?(X) = Xn 'a1tTn+1-2i(x) = X, 2X, JJ (x -yJ), 
.=o 1= 

where 

(30) XA = 2F(n + A + l)/rF(n + 2A), 

m = [(n + 1)/21, the prime indicates that the constant term, if it appears, is to be 

halved and the ai, are the first m + 1 coefficients in the series 

00 r00 - I 

(31) E aiu= {z fj. U}J 
i=O J=O 

with o, = 1 and 

(32) fij = (1 -Vj)(I Al(n + A + j))fj- 

The 
aitL 

may be computed from the triangular system axo = 1, a1,, = -f, and 

k-I 

(33) ak,, = 
fIkA- E fiyak-i,y' k = 2, ... ,m. 

i=1 

We have not shown the dependence of the ai, on n. 
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The connection between En+I ,1 and the Gegenbauer polynomials is given by the 
identity 

(34) Cnj(x)E11+l 1',x) = z clcn++ i( 
,=0 

from which it follows that 

(35) |w(x)C,,,i(x)En+ 1,,(X)X' dX = , k = O, I,..n 

so that, by the theorem in [1, p. 77], an interpolatory integration rule based on the 
zeros of C,1,,(x) and En+ 1t(x) is exact for all polynomials of degree ? 3n + 1 which 
forms the basis for KEGGIR's. The Ck = ck(, n) are given by 

(36) Ck = Ifk/hn+?1+k,p 

where 

(37) fk(x) = CnA(X)En+l ,(X)Cn+l+k,A(x), k = 0, 1,... 
and h,l+l+k,1 is given by (3). 

If we now define the function of the second kind QnA(t) by 

(38) QnA(t) I(CnA t) jlW(X)Cn,,(X) dx 1 < t <I 

which differs by a constant from the function Q"(t) in [9], we have that 
n 

(39) QnA,(x)En+ll, (x) = g + E ciQn+ l +?l,(x), 
,=io 

where 

(40) t = 2r(f + 2)/r(2[t). 

As is well known, the Qnt(t) also satisfy the recurrence relation (6) with Qo,(t) 
I(1; t) and Ql,(t) = 2A[tQ0(t) + ho]. Furthermore Qn&, C'(-1, 1). 

3. The Weights in the Integration Rules for CPV Integrals. By identifying PN(x) 
with the appropriate polynomial, we get explicit expressions for the weights b, and di 
in the rules RN(f; X) and RN+I(f; X) as well as information about the exact 
precision of these rules. Thus, if we set PN(x) = Cnt(x), the first Gauss-based rule 
becomes, for X # x1, 

(41) IFf w iV jC X))x- 

+k lfI w(x)Cn,(x)f[xII... xn, x] dx 
nA ~ x- 

where the wi and xi are as in (7). If A = Xj, 

(42) R(f; x,) = 2 wi CQn'(Xi ) ) i- + cn'() f(x). 
n i X 
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We get the KE of this rule by setting PN(x) C,,y(x)E,, + I (x). Then, for X # xI, y, 
I(; 

= 1(* xI) ,i1+ * ( 
(43) I(f; X) = (Ul - u*) _) + , (VI - V*) Y 

-~~ I - --lf (x)C(x)El+ly 

+k1I2'?1 f 1 w(x)Cf,j(x)E,,1,1,(x) 

Xf [X,...XI, yI...y1+ I, X] dx, 

where the xI, y,, u, and v, are as in (9), 

(44) u* = (Q,l(X)E,l+l AL(X) - ,J)/E,l+l (x)C,L(xI), i n . , 

and 

(45) v* = (Q,1t(X)E,1+t1H(X) - 8A)/E,+1/(yI)CIM(yI), i - 1. n + 1. 

The value of the numerators in (44) and (45) is derived as follows, using (34), (38), 
and (39): 

(46) QN(X) f w(x) x-Xx)E,,+ ,( dx 

u-O -1 xX 
E f1Q,I W(x 1+ lX) + Q(X) ) - 

= C,Qn+I+i,,t,() =QntL(;)E tI+ 1.tL(;) 
- 

Au 
. =o 

As for the denominators, the first or second of the two terms in the sum 

( En+ 
I,A(x) 

Cn,u(x))' = En+ 
I,tL(X) 

Cn,(X) + En+I()n,x 

vanishes for x = x, or x = y, respectively. 
If X = xJ the coefficient of f(xj) in (43) is replaced by 

Q I,(xi) +Qnli(x )E'n+ I A(X1 ) 

CnA( Xy) CnAf]( Xj) En + l A( Xy) 

while if X = y, the coefficient of f(yj) in (43) is replaced by Qn(yj)/C,I(y). This 
follows from (18) by differentiating (46). If we compare the Gauss-based rule (41) 
with its KE (43) for the important case X = 0 and n even = 2m, we see that since 

Q2m,tf() 
= 0, the rule in (41) reduces to GGn(f/x), ignoring the fact that we are 

dealing with a CPV integral. In the corresponding KE, we are not so fortunate 
inasmuch as u* and v* do not vanish for X = 0 because of the 6. component. 
However, since yj = 0 for some j in the KE of an even-point rule, we see that the 
coefficient of f(O) vanishes so that the KE contains only 2n rather than 2n + 1 
points. As for the error, in (41), as we shall see, EP = 2n and this is also the EP of 
the KE so that nothing is gained in this case. Of course, for arbitrary X, when 

QnM() & 0, the KE increases the EP from n - 1 to 2n, but as we have indicated 
above, this could have been achieved by any (n + 1)-point extension to any n-point 
interpolatory rule. 
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In the Lobatto case, we set PN(X) = C,1+ ,+I1(X) = (1- x2)Cn 1+1(x) and get 
a similar set of formulas. Thus, for X #7 x-,, 

(47) I(f;X) ' - Q,,,i,+i(X)) f(w ) 

fI w( x) Cn+, I,,+, 1( X) f [X x+I x 

where the w- and x- are as in (8). In the case X = X- for some j such that 

C,l 1+ (x-J) 
- 0 (X #? 1 since I(f; X) is only defined for X E (-1, 1)), the coeffi- 

cient of f(x-,) is replaced by Q'- -+ ( - )/(I I)CI>_Ill+(.-). For the KE of this 
rule, PN(X) = C,l?+I+I(x)E,IM+I(x), and wehaveforX #7-,,y, 

(48) I( f;U)*) V 

+k-1 2`1+1 1- X w (x) cl+ ' y+ , (x )En + I (x) 

Xf x-lI. . .-n+ Yi ,..Yn.,x] dx, 

where 

(49) u* - - +I)1Et1,A+ (-j) x 

and 

(50) v, - 

(Q,lnl,+l(X)E,lA+l(X) - +I)En ,)C 

If X x, the coefficient off(5-1) in (48) is replaced by 

Q*- xi(J + nlplx)En+() 

Cn'+ IA+ I( XJ) Cn'+Ip+I(X En,+ I ( Xi 

while if X the coefficient of f(tj) in (48) is replaced by 

Qn- ,U + I( YJ)/C-n + I ,A+ I ( Y 

The same remarks as above about the error for general X apply here too, in that in 
(47) EP = n and in (48) EP = 2n. Similarly, the special case X = 0 and n odd leads 
to the same conclusions as in the Gauss case. 

We now turn to the rule RN+ ?(f; X) and its error term EN+ l(f; X). In the Gauss 
case, we have that for X x 

(51) I( f; 2t) = w f-' + 'i'2 (A 
+i 1t(X) 

+k-f 
'w(x)CnA(x)f[xl, 

.. ,x, X, x] dx 

and EP = 2 n because of orthogonality. Note that, for X = 0 and n = 2 m, the rules 
(41) and (51) are identical so that, for (41), EP = 2n as mentioned above. If X = xj, 
the two terms 

wif(xi) Qn+ A)f(A) 
x.- C- (X) 
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must be replaced by P7f(xj) + wf'(x1) with 

W1C' (x,)/2 - Q',(x,) wj(t + ?)Xj Q"(X1) (52) w = C;,( x) 1 - X C,( x) 

where we have used (5). 
The KE of this rule has three forms depending on the value of X. If X ? x,, y, 

then 

(53) I( f; Xt) = 4 iuX) + 
- ? vI ( + v0f(X) 

+ kn -2-nX-f1 w(x)Cnf(x)Efl?Iyex) 

Xf [xI,.. ~xn Yi ... ,+ I X x ] dx. 

where 

(54) v Qt(\ 

( 4) vo =~~~ Cn t()) E7n+l 1,t(X)CntJX) 

Thus, the only additional quantity we need here is the second term in (54). The EP 

of (53) is equal to 1 + EP of KGGnf. 
If X= xJ, then u1f(x1)/(x1 - X) + tof(X) must be replaced by u,f'(x,) + 

u,f(x,), where 

(55) u = u ____+ 

Qn,u(Xy) En+ I t(xy) + Q',(x, )En+IyX 

Cn',(xj) En+ Q,t(x( ) 

While this involves a more complicated coefficient for f(xJ) =f(X), it does not 

involve any function values aside from the KE values inasmuch as the Gauss 

formula had already included the derivative term. The situation is different if X = y,. 
For then, the terms vjf(y1)/(yj - X) + vof(X) in (53) must be replaced by v1f'(y,) 
+ v f(y1), where 

(56) v E,n 17M(y,) + VjCn(yj) -Qn(Yj) 
Vi 

2En+,,g(yj)CnA(Yj) 

Here we have an extension which involves f '( yj) f '( A), whereas the Gauss formula 

did not involve f'(A) at all. This is a serious drawback of this extension since it 

occurs in the frequent case where A = 0 and we use an even Gauss rule (also called 

symmetric pairing) in which case the KE contains an odd number of points 
including one at x = 0 = A. In Section 4, we shall suggest an alternate extension 
which sidesteps this problem. 
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Returning to RN+A(f; X), we list now the formulas in the Lobatto case and the 
corresponding KE's. For A - x,, we have 

(57) I(f;A)5 _ + Qn 

i2I WI (1 -A2)C(1A)f(X ) 

+n I ft+I Iw(x)(1l- X)Cn_l,,+I(X) 

Xf -VI 5.11+ 1 , A, x] dx. 

As in (51) EP = 2n because of orthogonality. If A = xj where Cnl,? +,(5xj) = 0, the 
terms involving f(5j) and f(A) must be replaced by ij?f '(xj) + iv-jf(5y.), where 

(58) _ (tt- _ g (1 - _ _ )C,, ,_+_(_ _j) 

As for the KE, the three forms are, first for A 7# x,, y,, 

(59) I(f; AN) = u r(i) + vjy _ + vf 

+k-,+,+2 +1?IA,L-i 4'1 w(x)(1 x2) 

X Cn_ I1,u+ I(X)Enu+ I(X)f [-I, ...* * pV *n+I1Y* * *. . ,j A, x] dx, 

where 

(60) V( Qn-l ( IA__) _ _t+_I 

(1 -A )Cn-1,+l(X) (1 - )Cn_,,p+j(X)En t+1(X) 

The EP of (59) is equal to 1 + EP of KLGn+ I f. 
If A = x; where Cn_1 ,+1(5-j) = 0, the sum ui-f(x1)/(xj - A) + Iof(X) must be 

replaced by iijf'(.Vj) + Qjf(3-j), where 

(61) = ?jE'"(i) + 1 - 5 2 

n A+ ~ ~ 
(Qn-1 sXl,1(.Vj)E,e+() + Qn 1,+(5j) En,llX 

En'+ 1 t+ j(xj )En,A+ l (xj ) 

while if A-=j, the sum &jf(j3j)/(5j - A) + i5of(A) must be replaced by ij,f'(j) + 

j3Jf( j), where 

(62) 
- 4t i3EjE?1(i3)) + iFgn +? tX+1(i0 

Y Qn- A .Tj) 
Vi - ~(1 -.j2)C(Y 

The remarks above about Gauss rules for I( f; 0) with n even apply here for odd n. 

4. The Orthogonal Polynomials E2m+2, . In this section we introduce and derive 
some properties of the polynomial of degree n + 2, n = 2m, En+2,to which satisfies 
the orthogonality conditions 

(63) f'w(x)Cn,(x)tn+2,,Xx)xk dx = 0, k = O, 1,...,n + 1. 
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Note that for n odd, we already have that 

(64) f'w(x)Cn,(x)E ?,,1x)xkdx=O, kc0,l,...,n+ 1, 

by the odd-even effect. Now, if we consider the polynomial of degree n + 2, 
xE, + ,,l(x) - a, for any constant a, we have that 

(65) f w(x)CQ,(x)(xEn+l,,(x) - a)xk dx 0, k 0, 1,. - 1, 

by (35) and the orthogonality of Cn,. Hence, if we define E,n2,,(x) = xE,n+ I,x) - 

an,v where 

(66) ant f|w(x)Cn,(x)En,+ ,,,(x)x+ dx/fL w(x)QC,(x)x` dx, 

it follows that (63) holds for k = n and, by the odd-even effect, also for k = n + 1. 
An explicit expression for ini follows from some results in [9] and the properties of 
the orthogonal polynomials CnA, so that 

(67) ani - k /k =(aJ ai Il,I L7F/4. 

Monegato [4] has shown that the polynomial E, f'2 , defined above is the unique (up 
to a constant multiplier) polynomial of degree n + 2 satisfying (63). 

We now investigate the zeros of El 2,2p. Since, for n even, E,l, 2,, is an even 
function, it suffices to deal with the positive zeros. First we see that at the zeros y, of 

En+ li, En?+2M(Y,) = -an. Furthermore, En, 2,10) = 0, so that E,, 2, has a maxi- 
mum or minimum at x = 0 depending on the sign of E,7' 2,10). Since E (', 2,10) 

2En+ ,10(), this sign depends on the parity of m = n/2. For m even, E,, (0) > 0, 
while for m odd, E' (0) <0 as can be verified by tracing the curve of the 

polynomial of odd degree En+, ,,. Thus, for m odd, E,, + 2., has a maximum at x = 0, 
while for even m, it has a minimum. 

Let us now consider the case 0 < y < I. From the results in [9], we see that 

an, < 0. Now, if m is even, Em+2,t has a minimum value of -dn,l > 0 at x = 0. If we 
label the nonnegative zeros of En+ 1 4 as 0 = y( < y< < < <ynl < 1, then in every 
interval (y, y,+,), Efn+2?, has an extreme point. Hence, E,?+2, has a maximum in 

(yo, Yi), a minimum in (yl, Y2),..., and, finally, a minimum in (Ym- 1y y). In each 
interval in which En?+2, has a maximum, it has no zeros. If it has a minimum in an 
interval, it will have no zeros, a double zero, or two zeros there depending on 
whether the minimum value of En+2?,A is positive, zero, or negative. Thus the 
maximum number of positive zeros is m, so that En+?2,1 has at most n real zeros for 
m even and 0 < p < 1. On the other hand, if m is odd, En+2,t may have n + 2 real 
zeros and most probably does inasmuch as dnA is small so that En+2,t is indeed 
negative at the minimum points. In fact, the zeros of En+2,u are quite close to the 
zeros of En+ 1,, 

For 1 < A?-,- 2, the situation is reversed inasmuch as 0nE > O [9], so that in every 
interval in which En+2 ,l has a minimum there are no zeros, while when En+2,lx has a 
maximum there are no zeros, a double zero, or two zeros depending on whether the 
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value of En +2, at this maximum is negative, zero, or positive. Thus, for m odd and 
1 < It 2, n + 2, has at most n real zeros, while for m even, E,+? 2, may, and most 
probably does, have n + 2 real zeros which are quite close to the zeros of E,? + I,,. 

Before discussing the use of these results in numerical integration, we remark here 
that Monegato [5] has shown that 

(68) E2I/?2 (x) E,l++172''/2)(2x2- 1) 2)(-X)n 2El+,1?2, 1/2)(I -2X2) 

where E j (',)( x) satisfies the orthogonality conditions 

(69) I (i x)a(1 + x)8P,(0 )(x)Ea,+)(x)x' dx = O, k = 0,...,m, 

and P,(" : ) is the Jacobi polynomial. Our investigation therefore shows that a 
Kronrod extension to the Gauss-Jacobi integration rule based on the zeros of 
p (A+I/ 2,-/ 2or p(-1/2.A+ 1/2) with all zeros in [-1, 1] cannot exist for m even and 
0 < < 1 and for m odd and 1 <y ? 2. For m odd and 0 <y < 1 and for m even 
and 1 < ? 2, KE's can probably be computed even though the theory is incom- 
plete. 

Once we have a situation where we have n + 2 zeros y, of E,1+2, . we can use them 
to derive an extension to GG,, f. We have that 

/I n+2 

(70) If = r,f(x,) + E sjf(i,) 
,=I ,=I 

+ 
k,,A,2-C1fw(x)C,,,(x)t,1+2,(x)f[xI.X,I , 5Wn . Y1Y.?. 9n+2X] dx, 

with EP 3n + 3, where 

x1u1E,1+? J(x1) - lyw, 
(71) x1E,1?,(x,)- 

(72) 
(72) ~ ~~~~ ' 

tt CZ( ) )(En+ X.i't(YJ + Y E'n+1 (YI) 

and x,, u,, w, are as in (7) and (9). From (19)-(22) with PN(x) - Cn;AX)%+2,,,(X), 
we have that 

(73) I(f; f) rx X + S+ f2i y,A of( ) 

+ k ̀2=l +n0f(X + n-L 2n;K-LE, W(X )CnA(X )tn+2s,A(X ) 

xf [xI, . . ,xn y.,. . yn+2? /X, x] dx, 

with EP = 3n + 4, where 

(74) Qso (A) = X6 
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(71), (72), and (74) follow from the fact that 

QN(t) f 
W 

x-tCdx 

-fi w(x)Cfl,(x)[xEl+ l ,(x) - LPII dx 

-I x-t 

= w(x)Cfl,L(x)E ? (x) dx - - x n 

t[Qn,(t)En+ ,?1(t) -] - nAQnA(t) 

- QnM(t)En?+2 (t) -ts 

We are only interested in the case X X- x,, j, since otherwise we would use the usual 
KE's given in Section 3. We notice that, as before, for X - 0, so = 0 and we have a 
case of symmetric pairing. Unfortunately, for the very value X - 0, for which we 
developed this new formula, there are problems. In Table 1, we list some values of 

lan, and 91, the smallest positive zero of E?n+2 , for t - 
2, the most prevalent case. 

Since the integration rule in (73) can be rewritten, for X = 0, as 

r-I Xt =1 y, 

where we assume that the positive zeros are xi < x2 < ... < xr and Yi <Y2 < 

<.. Ym+, we see that one term in the second sum in (75) is s [f(jY1) - 
and, as the numbers in Table 1 show, this term can lead to the loss of several 
significant figures, the number increasing with increasing n. 

TABLE 1 

anuandyj, the first positive zero of En+21,, for ,u - 2 and odd m, n = 2m 

m anA 
3 -1.54(-2) 4.14664(-2) 
5 -5.70(-3) 1.97603(-2) 
7 -2.46(-3) 1.20896(-2) 
9 -1.81(-3) 8.36055(-3) 

11 -1.22(-3) 6.22128(-3) 
13 -8.79(-4) 4.86127(-3) 
15 -6.63(-4) 3.93369(-3) 
17 -5.18(-4) 3.26778(-3) 
19 -4.16(-4) 2.77069(-3) 
21 -3.41(-4) 2.38801(-3) 
23 -2.85(-4) 2.08599(-3) 
25 -2.42(-4) 1.84268(-3) 

In the Lobatto case, the appropriate orthogonal polynomial for n odd, i.e. an even 
number of integration points, is E l ,(x). In this case, we see that if - 

< 
< 0, 
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n = 2m + 1, E,+l I has at most 2m real roots if m is even and probably has 
2m + 2 real roots if m is odd, while for 0 <It i 1, which includes the usual Lobatto 
case, i -= 2, Ek,+,+ has at most 2m real roots if m is odd and probably has 
2m + 2 real roots if m is even. Thus, for the usual case of w(x) = 1, a 2n + 2 point 
extension exists in the Gauss case if n/2 is odd and in the Lobatto case if n/2 is 
even. The formulas in the Lobatto case, corresponding to the Gauss formulas 
(70)-(74), are as follows: 

Let 9 be the n + 1 real zeros of + ,+ . Then 

(76) If = f(5) + 2 sf( pi) + k,? 1,+ l 2'+ 1L 11 

XJ w(x)(l -X2)C (X)E,7+ + (X) 

Xf [xvl,. . Xn + Ils ...Jn +1 x] dx, 

with EP = 3n + 2, where 

(77) ' 
= 

- 

(78) -L+Si (I -_7)~1i 1CQ)(E ~1p1 9E!+(9) 
(78) ( I 9i ~~~)Cn_ I,t+ i(Yi)(En,,u+ I( 9j) + 9 nE'u l(9))Y 

and 5-i, -ii w; are as in (8) and (10). From (19)-(22) with 

PN(X) = (1 - x )Cn-lI +I(x)tn+lI,A+L(x), 

we have that 
11+1 ~n+1 

f 

(79) I( f; A)=X r (t)A + , A (Y) f 

+keL I? +12-n+l -nL_, ?+f w(x)(l -x2C_ +()nlyI 

with EP =3n + 3, where 

(80) 5 = Qn 1 ,,+,(;V) _- - i 

The same remarks about loss of significance apply here as in the Gauss case. 
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